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Abstract: This study proposes a method for detecting possible faults in wind turbine systems in advance such that the
operating state of the fan can be changed or appropriate maintenance steps taken. In the proposed method, a chaotic
synchronisation detection method is used to transform the vibration signal into a chaos error distribution diagram. The
centroid (chaotic eye) of this diagram is then taken as the characteristic for fault diagnosis purposes. Finally, a grey
prediction model is used to predict the trajectory of the feature changes, and an extension theory pattern recognition
technique is applied to diagnose the fault. Notably, the use of the chaotic eye as the fault diagnosis characteristic
reduces the number of extracted features required, and therefore greatly reduces both the computation time and the
hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed
method exceeds 98%. Moreover, it is shown that for oil leaks in the gear accelerator system, the proposed method
achieves a detection accuracy of 90%, whereas the multilayer neural network method achieves a maximum accuracy of
just 80%.
1 Introduction

The public has begun to pay attention to environmental protection
with rising environmental awareness. The green energy is one of
the solutions to reduce environmental pollution [1]. Wind power
generation, photovoltaic power generation and fuel cell of
regenerative energy are very popular research areas. The total
installed capacity of global wind power has increased greatly with
6700 MW in 1966 to 237 669 MW in 2013 as shown in Fig. 1.
The research and development of wind power have attracted great
attention [2].

The fault occurrence probability of any power generation system
increases after a long-term operation. The wind turbines are
expensive [3, 4]. According to the data of Swedish wind power
plants during 1997–2005, the easily breakable parts of wind power
generators should be maintained more closely, and the average
annual total hours of shutdown for repair and maintenance of wind
power plants is considerable, thus affecting the benefit of wind
power significantly [5].

Most existing fault diagnosis methods for wind turbines monitor
the vibration or current signal, analyse the intercepted normal and
fault signals, and apply some form of artificial intelligence
algorithm to perform smart fault diagnosis. However, traditional
wavelet analysis [6], neural network [7] and fuzzy theory [8]
methods are impractical for real-time fault diagnosis. Although the
wavelet analysis performs well in the analysis of vibration signal
converted from time domain into frequency domain, besides
wavelet decomposition for the intercepted signal, it shall find out
the frequency band corresponding to the fault feature point
according to Fourier transform, so as to find out the corresponding
fault. Similarly, neural networks require a large number of training
samples and involve a lengthy learning process. Finally, fuzzy
theory methods cannot determine a robust set of fuzzy logic rules
without a large volume of historical data, and consequently a large
number of ends occur in the fault identification process.

It is important to design a system that can extract features of
operating signals based on the system operation status, forecast the
trend of features, forecast the fault state, send the analytical result
to the control centre through wireless communication network [9,
10] in a short period of time for maintenance, adjusting the
operating mode, preventing the wind power generator from
accidents, ensuring the system a safe operation, increasing the
management efficiency and reducing the operating and
maintenance costs. As the wind electric power generation attracts
more attention, an increasing number of fault detection systems
has been used on wind electric power generation, with more
functions, even troubleshooting of external problems. For example,
the offshore wind power generation system can eliminate the
vibration resulted from the seawater impact [11]. Although the
recognition accuracy is high, the fault system is only applicable to
distinguishing the state. The lifetime of wind turbine is shortened,
when the machine is damaged because of faults. Therefore, this
paper adopts grey prediction to prevent major faults, so as to
prolong the lifetime of machine. The grey prediction method has
been widely used for forecasting purposes in previous studies on
wind turbine systems. Grey models can be used to predict wind
speed and wind power [12–15]. It is also that the grey mode was
improved to reduce the prediction error [16]. In the present paper,
the grey prediction method is used to forecast the occurrence of
faults. Most existing fault diagnosis systems for wind turbine
power generation systems increase or decrease the number of
sensors in accordance with the number of characteristics required
by the diagnostic system to discern the faults. Thus, for diagnostic
systems based on a large number of characteristics, the number of
sensors increases and hence the hardware implementation cost also
rises [17]. Recently, the concept of chaos synchronisation had
successfully applied to fault diagnosis systems, such as
photovoltaic systems [18], power quality systems [19] and gas
insulated switchgear systems [20] and so on. Accordingly, in this
paper, a chaotic synchronisation-based detector module is used to
transform the main characteristic data of the system (i.e. the
system vibration signal) into a chaos error distribution diagram,
and the two centroid points (chaotic eyes) of this diagram are then
taken as the fault detection characteristics. As a result, the fault
diagnosis system can be implemented using just one sensor, and
consequently the hardware cost is significantly reduced. Moreover,
the grey prediction method requires very little information for
forecasting purposes. By contrast, neural network methods require
a large volume of historical data and a long learning time in order
to ensure a reliable prediction result.
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Fig. 1 Total capacity of global wind power electric generating units during 1996–2013
2 Design of experiment platform

The wind power experiment platform designed in the laboratory was
used for this paper as shown in Fig. 2. The electric and mechanical
signals of wind turbine were captured by sensors, transmitted
through the Ethernet to the signal processing unit of remote
monitoring computer [21–23]. The characteristic signal acquisition
unit extracted applicable characteristics, and the signal data were
stored in the database. The fault forecasting model was built using
the data. The process of the fault diagnosis is shown in Fig. 3,
including signal processing, feature extraction, characteristic
trajectory forecast and fault diagnosis modules.
3 Model development

3.1 Chaotic synchronisation detection method

Meteorologist Norton Lorenz proposed the Chaos Theory in 1963
[24]. This theory is of research on unsteady behaviour of
non-linear dynamic system. The chaotic synchronisation proposed
in 1990 is a theory using a type of chaotic signal to control
another type of chaotic signal and synchronising the two signals at
last [25]. After that, many methods have been presented for the
control and synchronisation of chaotic systems: see the papers
[26–28] and the references therein. The two synchronous chaotic
systems are called master system and slave system. When the
Fig. 2 Experiment platform for wind power generation system of this paper
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initial values of master and slave systems are different, the
operation trajectories of the two chaotic systems also differ. Thus,
a controller has been affixed to the back end of slave system to
track the master system. In this paper, the chaotic trajectory is
used for detection of system signals. The master and slave chaotic
systems are shown as (1) and (2).

Master

ẋ1 = F1(x1, x2, x3, . . . , xn)
ẋ2 = F2(x1, x2, x3, . . . , xn)

..

.

ẋn = Fn(x1, x2, x3, . . . , xn)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

Slave

ẏ1 = F1(y1, y2, y3, . . . , yn)+ u1
ẏ2 = F2(y1, y2, y3, . . . , yn)+ u2

..

.

yn = Fn(y1, y2, y3, . . . , yn)+ un

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2)

where Fi (i = 1, 2,…, n) is a non-linear function, (1) and (2) form the
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Fig. 3 Overall program flowchart
error state as (3). The dynamic error is as (4)

e1 = y1 − x1, e2 = y2 − x2, . . . , en = yn − xn (3)

ė1 = F1(x1, x2, x3, ..., xn)− F1(y1, y2, y3, ..., yn)+ u1 = G1

ė2 = F2(x1, x2, x3, ..., xn)− F2(y1, y2, y3, ..., yn)+ u2 = G2

..

.

ėn = Fn(x1, x2, x3, ..., xn)− Fn(y1, y2, y3, ..., yn)+ un = Gn

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(4)

where Gi (i = 1, 2, …, n) is a non-linear equation, and the dynamic
error equation is of chaotic system. The kinematic trajectory of
attractor of chaos phenomenon, which is used in this paper, is
mostly used to study various system operation states, such as the
behaviours of periodic, non-periodic and random signal
time-domain states. Therefore this paper uses chaotic dynamic
error equation to recognise the system state. The dynamic error
should be multiple data; the data mode is expressed as (5)

ė1[j] = ẏ1[j] −ẋ1[j]
ė2[j] = ẏ2[j + 1] −ẋ2[j + 1]

..

. ..
. ..

.

ėn[j] = ẏn[j + n− 1] −ẋn[j + n− 1]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

,

j = 1, 2, 3, . . . , j − n
(5)

The controller equalises the trajectories of two chaotic systems
simultaneously. This tracking state is chaotic synchronisation, as
expressed by (6)

lim
t�1 ||yi(t)− xi(t)|| = 0

i = 1, 2, ..., n
(6)

Two Lorenz chaotic systems are taken as examples in this paper. One
is the master system, and the other one is the slave system, expressed
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as (7) and (8). The dynamic error state equation is established and
expressed in matrix form as (9)

Master:
ẋ1 = a(x2 − x1)
ẋ2 = bx1 − x1x3 − x2
ẋ3 = x1x2 − gx3

⎧⎨
⎩ (7)

Slave:
ẏ1 = a(y2 − y1)+ u1
ẏ2 = by1 − y1y3 − y2 + u2
ẏ3 = y1y2 − gy3 + u3

⎧⎨
⎩ (8)

Error state:
e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

⎧⎨
⎩ (9)

ė1
ė2
ė3

⎡
⎣

⎤
⎦ =

−a a 0
b −1 0
0 0 −g

⎡
⎣

⎤
⎦ e1

e2
e3

⎡
⎣

⎤
⎦+

0
−y1y3 + x1x3
y1y2 − x1x2

⎡
⎣

⎤
⎦ (10)

According to [25], we let ui = 0 and the suitable parameter’s values
are selected to guarantee the error dynamics system is attracted in a
bounded region in (10).

3.2 Forecast method

The Grey Theory, proposed in 1982, uses a small volume of
historical data for modelling, thus reducing the computing speed
of database and prediction algorithm [29, 30]. This paper uses the
historical operating data built by the monitoring system to predict
the types and potential symptoms of system faults according to a
small amount of operating information. This grey prediction
method can provide information onto maintain or change the parts
which are about to be damaged ahead of time, and to protect the
system against heavier damage.

The Grey Theory has been used to define (11). It is the differential
equation of grey GM (1,1) model

dei
dt

+ aei = b (11)

where t is the independent variable of system; a and b are the
undetermined parameters of grey model (a is the development
coefficient and b is the grey control variable), ei is the value of
accumulated generating. This grey prediction modelling can be
divided into parametric type and matrix type. The matrix form is
used in this paper to build this model. The modelling procedure is
expressed as the following equations.

Step 1: A set of sequence is captured using (11) in the initial forecast
of the system as original sequence; when a cycle is finished, the
system captures a set of sequence in the data again each time as
new original sequence. Equation (12) is the original sequence
(e(0)i ) of forecast modelling

e(0)i = (e(0)i (1), e(0)i (2), . . . , e(0)i (k))

k = 1, 2, 3, . . . , m; m [ N (12)

Step 2: The originally disorderly and irregular data are processed by
accumulated generating operation to obtain a set of new and
relatively regular sequence, the accumulated generating expression.
Equation (13) shows the new sequence (e(1)i )

e(1)i =
∑1
L=1

e(0)i (L),
∑2
L=1

e(0)i (L), . . . ,
∑n
L=1

e(0)i (L)

( )
L [ N (13)
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Fig. 4 Schematic diagram of fuzzy set and extension set
Step 3: The average generation can adjust the weights of data, the
weight α varies with the root loci; expressed as (14)

z(1)(L) = a∗e(1)i (L)+ (1− a)∗e(1)i (L− 1) L . 1; L [ N (14)

Step 4: The undetermined coefficients a and b of GM (1,1) are
worked out, the least square is used to determine the ranges of the
two values, expressed as (15)

e(0)i (L)+ az(1)(L) = b L [ N (15)

Equation (15) is converted into matrix equation (16), the parameters
H, B and â are expressed as (17)–(19)

H = B∗â (16)

H =

e(0)i (2)

e(0)i (3)

e(0)i (4)

..

.

e(0)i (L)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

B =

−z(1)(2) 1
−z(1)(3) 1
−z(1)(4) 1

..

. ..
.

−z(1)(L) 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (18)

â = a
b

[ ]
= (BTB)−1BTH (19)

The parameters a and b of (19) can be worked out by (20) and (21)

a =
∑n

L=2 z
(1)(L)∗∑n

L=2 e
(0)
i (L)− (n− 1)∗∑n

L=2 z
(1)(L)e(0)i (L)

(n− 1)∗∑n
L=2 [z

(1)(L)]2 − ∑n
L=2 z

(1)(L)
[ ]2

(20)

b=
∑n

L=2 [z
(1)(L)]2∗∑n

L=2e
(0)
i (L)−∑n

L=2 z
(1)(L)∗∑n

L=2 z
(1)(L)e(0)i (L)

(n−1)∗∑n
L=2 [z

(1)(L)]2− ∑n
L=2 z

(1)(L)
[ ]2

(21)

Step 1: When parameters a and b are obtained, the prediction value
of accumulated generating is shown as (22)

ê(1)i (L+ 1) = e(0)i (1)− b

a

( )
e−aL + b

a
L [ N (22)

Step 2: The value of grey prediction is obtained by IAGO; expressed
as (23)

ê(0)i (k) = ê(1)i (k), k = 1

ê(0)i (k + 1) = ê(1)i (k + 1)− ê(1)i (k), k . 1

{
(23)

3.3 Extension theory

This paper used the extension theory to deduce an algorithm for fault
forecasting. The extension theory was proposed by Tsai (1983), who
studied the law and methods for solving contradictory problems
quantitatively and qualitatively [31]. The matter-element model
and extension set were used to quantify things. The correlativity
was used for planning, so that the information of things can be
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extracted easily. The matter-element theory and extension set are
two main cores of the extension theory. The matter-element theory
concerns the matter-element extensibility and matter-element
transformation properties. The extension set aims at the probability
of things change. The matter-element transformation transforms
matter and quantity for solving problems and contradictions [18].
The extension set uses extension model and fuzzy mathematics to
handle contradictory and incompatible problems. The range of
fuzzy set is extended from 〈0, 1〉 to 〈−∞, ∞〉. Fig. 4 is the
schematic diagram of fuzzy set and extension set.

The extension theory refers to various persons, affairs and objects
in daily life ‘thing’, and expresses them as ‘thing name’. Various
things have differently described patterns and types, and the
participators corresponding to thing occurrence are called ‘thing
characteristics’. The thing characteristics have corresponding
‘characteristic quantity values’. Therefore, in order to elaborate the
matter-element of a thing, there should be three elements,
including thing name N (Name), thing characteristic C
(Characteristic) and characteristic quantity value V (Value).
Equation (24) is the mathematical expression of matter-element,
the specific evaluation procedure of extension theory is described
below

R = (N , C, V ) (24)

Step 1: The ranges of extension classical domain and joint domain
are expressed as (25) and (26)

Rk = (Nk , Ci, Eki) =

Nk c1 kak1, bk1l
c2 kak2, bk2l

..

. ..
.

cn kakn, bknl

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

k = 1, 2, . . . , m

(25)

RP = (Np, Ci, epi) =

Np c1 kap1, bp1l
c2 kap2, bp2l

..

. ..
.

cn kapn, bpnl

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (26)

Step 2: Import the matter-element to be tested, expressed as (27)

Rt = (q, Ci, eti) =

q c1 et1
c2 et2

..

. ..
.

cn etn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (27)

Step 3: The weight coefficient of each characteristic is stipulated
according to the importance, expressed as (28)

∑n
i=1

wi = 1 (28)
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Fig. 5 Experimental flow of the fault forecasting for wind power systems

Fig. 6 Measured vibration signal of oil spill in gear case
Step 4: The value of correlation grade between the data to be tested
and various level sets is calculated as (29)

kk (ei) =

−r(ei, Xki)

Xki

∣∣ ∣∣ , ei [ Eki

r(ei, Xki)

r(ei, Xpi)− r(ei, Xki)
, ei � Eki

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (29)

where the distance between characteristic ei and each classical
domain Rk is defined as (30), the distance between characteristic ei
and joint domain RP is defined as (31)

r(ei, Eki) = ei −
aki + bki

2

∣∣∣∣
∣∣∣∣− bki − aki

2
(30)

r(ei, Epi) = ei −
api + bpi

2

∣∣∣∣
∣∣∣∣− bpi − api

2
(31)

Step 5: Calculate the correlation grade between input matter-element
and various classes

bk (q) =
∑n
i=1

wikk (xi), k = 1, 2, . . . , m (32)

Step 6: correlation grade normalisation: The relative value of
correlation grade of various level sets is calculated, the normalised
equation of (33) is used to make the correlation grade values of
various level sets in 〈1, −1〉

b′
k (q) = 2bk (q) − bk (q) min − bk (q) max

bk (q) max − bk (q) min

(33)

Step 7: Determine the type of evaluated matter-element. If b′
r(q)

equals to 1, the undetermined matter-element is of No. r type, the
correlation of other types is measured by correlation grade.

4 Results and discussion

This paper used Lorenz chaotic as master and slave systems. The
parameters in the chaos system are selected as α = 10, β = 28 and
γ = 8/3. The GM(1,1) mode of Grey Theory was used to predict
the error dynamic states. By capturing the errors ei from the
master system xi and the slave system yi. In this paper of the wind
power system, the amount of vibration was captured to enter the
slave system, thereby the amount of errors were captured between
master and slave system as the characteristic of system. Seven
types of faults were diagnosed in the operation of wind power
generation system. Fig. 5 shows the flow of the fault forecasting
for wind power systems on this experimental. The fault types
included are normal, one blade damaged, two blades damaged,
30% of oil spills in gear accelerator, 50% of oil spills in gear
accelerator, 70% of oil spills in gear accelerator and 90% of oil
spills in gear accelerator. This paper used sensors to capture the
gear case vibration value, generator vibration value and gear case
oil temperature of wind turbine. The values of the three primary
characteristics were stored in the database. When the three primary
IET Renew. Power Gener., 2015, Vol. 9, Iss. 6, pp. 593–599
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characteristics were formed into chaos error distribution diagram
by chaotic synchronisation-based detector module, the centroid
(chaotic eye) was used as characteristic. The distribution diagram
formed of a primary characteristic had two centroids (chaotic
eyes), and the values of X-axis and Y-axis of the centroids were
recorded. Thus, there were 12 sub-characteristics. The centroid
(chaotic eye) of chaos error distribution diagram was forecast
using Grey Theory; and then the extension diagnostic method was
used to diagnose the present fault point situation and the forecast
fault point situation of the power generation system. This paper
used the LabVIEW to design the man–machine interface.

This paper used sensors to capture the data in different conditions,
and stored them in the database, where 10 000 data in the database
were used as modelling data. The classical domain and joint
domain of the extension matter-element model were set using the
modelling data. In addition, 5000 data were used for test. To
detect subtle change in the system, this paper imported the original
data into the chaotic synchronisation-based detector module to
form chaos error distribution diagram. However, as there were
many error distribution points in the diagram, this paper used the
centroid (chaotic eye) of diagram as the characteristic of fault
diagnosis to set the characteristics range effectively and reduce the
quantity of extracted features. Fig. 6 shows the signal waveform of
gear case vibration. The chaotic synchronisation-based detector
module read 1000 data each time, and different fault conditions
form different chaotic distribution diagrams. Fig. 7 is the chaotic
distribution diagram of gear case vibration value at different oil
levels of gear accelerator. Fig. 7a shows the normal state, Fig. 7b
shows 50% of oil spills in gear accelerator and Fig. 7c shows 90%
of oil spills in gear accelerator. The red triangles represent the
centroids (chaotic eyes) of X-axis positive field and negative field.
Fig. 8 is the chaotic distribution diagram of generator vibration
value in blade fault state and in normal state. Fig. 8a shows the
normal state and Fig. 8b shows blade failed.

This paper used grey prediction to predict the centroid (chaotic
eye) of chaotic distribution diagram. The next cycle centroid was
predicted according to the root locus of change in the centroid of
chaotic distribution diagram, so as to predict the situation of next
cycle. This paper used 5000 testing data in the database for
prediction. The case of 90% of oil spills was predicted according
to the data of normal, 30% of oil spills, 50% of oil spills and 70%
of oil spills, so as to prove the feasibility and accuracy of grey
597



Fig. 9 Trajectories of forecasting and real centroids

Fig. 7 Chaotic distribution diagram in different blade fault conditions

a Normal state
b 50% of oil spills in gear accelerator
c 90% of oil spills in gear accelerator

Fig. 8 Chaotic distribution diagram in different blade fault conditions

a normal state
b blade failed

Table 1 Accuracy rates of various fault diagnosis methods

Testing method Learning
times

Learning
accuracy rate, %

Test accuracy
rate, %

method proposed in
this paper

n/a n/a 98.8

K-means clustering
method

n/a 76.91 61.35

multilayer neural
network I (12-9-7)

1000 83.28 77.81

multilayer neural
network II (12-10-7)

1000 84.53 79.72

multilayer neural
network III (12-11-7)

1000 82.43 75.22
prediction. Fig. 9 is the curve diagram of real centroid fault trajectory
and forecast trajectory. As seen, the method proposed in this paper
can predict the trend of fault occurrence effectively and accurately
for prevention.

In the test of fault diagnosis and forecasting, the chaotic
distribution diagram formed 10 000 data of various characteristics
(gear case vibration value, generator vibration value, gear case oil
temperature etc.) in the database. The classical domain and joint
domain in each condition were set, and the extra 5000 data in the
database were used for test. The results proved that the accuracy
rate of extension theory is as high as 98.8%. In the present paper,
the fault diagnosis accuracy of the proposed system was compared
with that of a multilayer feed-forward neural network [32].
Tables 1 and 2 show the accuracy rates of the various fault
diagnosis methods and its forecasting methods. It is seen that the
multilayer neural network scheme achieves a maximum accuracy
rate of 80%. However, the proposed scheme has a maximum
accuracy of 90%. We also try to obtain the optimised parameters
by trial and error for obtaining better accuracy. Tables 1 and 2
show that the multilayer neural network with the (12-10-7)
configuration yields the highest accuracy of the various neural
network schemes.
IET Renew. Power Gener., 2015, Vol. 9, Iss. 6, pp. 593–599
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Table 2 Accuracy rates of various fault forecasting methods

Method Fault forecasting accuracy rate, %

method proposed in this paper 90.4
K-means 67
multilayer neural network (12-9-7) 81
multilayer neural network (12-10-7) 82
multilayer neural network (12-11-7) 79
5 Conclusions

This paper has proposed a fault diagnosis method for wind turbine
systems based on chaos theory, the Grey prediction method and an
extension theory pattern recognition technique. In the proposed
method, a chaotic synchronisation-based detector module is used
to transform the system vibration signal into a chaos error
distribution diagram. Notably, the chaos error distribution diagram
is constructed using the signal obtained from just one sensor.
Consequently, both the computation time and the hardware
implementation cost are significantly reduced. Having identified a
potential fault in the system state, Grey theory is used to predict
the actual occurrence of this fault in the future. Finally, extension
theory is applied to determine the specific nature of the fault.
Importantly, the proposed method enables potential faults to be
identified in advance such that appropriate steps can be taken to
ensure the continued safe operation of the system. The
experimental results show that the proposed method achieves a
successful fault diagnosis rate of more than 98%, and therefore
outperforms the traditional K-means and multilayer neural network
methods with recognition rates of 61.35 and 79.72%, respectively.
Furthermore, in detecting oil leaks in the gear accelerator system
(one of the most common faults in practical wind turbine systems),
the proposed scheme achieves an accuracy rate of 90%, whereas
the multilayer neural network scheme has an accuracy rate of just
80%.
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